skip to content

List of References

ACWI (2013). A National Framework for groundwater monitoring in the United States. Report prepared by The Subcommittee on Ground Water of The Advisory Committee on Water Information, Reston, Virginia, USA. 182p. from: .

ADES (2015). "Portail national d’access aux données sur les eaux souterraines." Retrieved 13 July 2015, from: .

AgBiz Logic (2017). "AgBiz Logic. AgBiz Logic is a suite of economic, financial, and environmental decision tools for businesses that grow, harvest, package, add value, and sell agricultural products.". AgBiz Logic, Oregon State University. Retrieved 03/02/2017, from: .

Agworld (2017). "Agworld: Agworld Everywhere. iPhone, iPad, Web and Scout." Agworld, West Leederville, Western Australia. Retrieved 02/02/2017, from: .

Ahmed, M., Akram, M.N., Asim, M., Aslam, M., Hassan, F., Higgins, S., Stockle, C.O. and Hoogenboom, G. (2016). Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture 123. pp: 384-401 DOI: .

Anderson, T. and Kanuka, H. (2003). e-Research. Methods, Strategies and Issues. Allyn & Bacon publishers (Pearson Education). 1st ed. 192p.

Anisi, M.H., Abdul-Salaam, G. and Abdullah, A.H. (2015). A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agriculture 16(2). pp: 216-238 DOI: .

Antle, J.M., Basso, B., Conant, R.T., Godfray, H.C.J., Jones, J.W., Herrero, M., Howitt, R.E., Keating, B.A., Munoz-Carpena, R., Rosenzweig, C., Tittonell, P. and Wheeler, T.R. (2017 in press-a). Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agricultural Systems.  DOI: .

Antle, J.M., Jones, J.W. and Rosenzweig, C.E. (2017 in press-b). Next generation agricultural system data, models and knowledge products: Introduction. Agricultural Systems.  DOI: .

Ausseil, A.G.E., Dymond, J.R., Kirschbaum, M.U.F., Andrew, R.M. and Parfitt, R.L. (2013). Assessment of multiple ecosystem services in New Zealand at the catchment scale. Environmental Modelling & Software 43. pp: 37-48 DOI: .

BackPaddock (2017). "The Back Paddock System: Integrated farm production planning, recording and agronomic decision support system." The BackPaddock Company Capalaba, Queensland. Retrieved 02/02/2017, from: .

Basso, B., Fiorentino, C., Cammarano, D. and Schulthess, U. (2016). Variable rate nitrogen fertilizer response in wheat using remote sensing. Precision Agriculture 17(2). pp: 168-182 DOI: .

BDLISA (2013). "Dictionnaire des données - Référentiel hydrogéologique (Version 2)." Retrieved 13 July 2015, from:

BDLISA (2014). "Base de Données des Limites des Systèmes Aquifères." Retrieved 13 July 2015, from:

Bell, G., Hey, T., Szalay, A. (2009). Beyond the data deluge. Science, 323, 1297-1298. 

Berge, T.W., Goldberg, S., Kaspersen, K. and Netland, J. (2012). Towards machine vision based site-specific weed management in cereals. Computers and Electronics in Agriculture 81(0). pp: 79-86 DOI: .

Bibby, J.S., Douglas, H.A., Thomasson, A.J. and Robertson, J.S. (1991). Land Capability Classification for Agriculture. Macaulay Land Use Research Institute, Aberdeen, Scotland. 84p.

Bietresato, M., Carabin, G., Vidoni, R., Gasparetto, A. and Mazzetto, F. (2016). Evaluation of a LiDAR-based 3D-stereoscopic vision system for crop-monitoring applications. Computers and Electronics in Agriculture 124. pp: 1-13 DOI: .

Blank, S., Bartolein, C., Meyer, A., Ostermeier, R. and Rostanin, O. (2013). iGreen: A ubiquitous dynamic network to enable manufacturer independent data exchange in future precision farming. Computers and Electronics in Agriculture 98(0). pp: 109-116 DOI: .

Blodgett, D., Lucido, J. and Kreft, J. (2015). Progress on water data integration and distribution: a summary of select U.S. Geological Survey data systems. Journal of Hydroinformatics. DOI: .

Boisvert, E. and Brodaric, B. (2012). GroundWater Markup Language (GWML) – enabling groundwater data interoperability in spatial data infrastructures. Journal of Hydroinformatics 14(1). pp: 93-107.

BOM (2015). "National Groundwater Information System." Bureau of Meteorology, Melbourne. Retrieved 22/3/2015, from:

Bonney, R., Cooper, C.B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K.V. and Shirk, J. (2009). Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy. BioScience 59(11). pp: 977-984 DOI: .

Bonney, R., Shirk, J.L., Phillips, T.B., Wiggins, A., Ballard, H.L., Miller-Rushing, A.J. and Parrish, J.K. (2014). Next steps for citizen science. Science 343. pp: 1436-1437.

Boston, A., Sheahan, P. and Michl, C. (2015). Water Data Online - A one-stop shop for water observations data in Australia HWRS2015, 36th Hydrology and Water Resources Symposium, Hobart, Tasmania, 7-10 Dec 2015. Engineers Australia

Boyd, d. and Crawford, K. (2012). Critical Questions for Big Data. Information, Communication & Society 15(5). pp: 662-679 DOI: .

Brevik, E.C., Calzolari, C., Miller, B.A., Pereira, P., Kabala, C., Baumgarten, A. and Jordan, A. (2016). Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma 264, Part B. pp: 256-274 DOI: .

Brodaric, B., Booth, N., Boisvert, E. and Lucido, J. (2015). Groundwater data network interoperability. Journal of Hydroinformatics. DOI: .

Brodaric, B. and Gahegan, M. (2006). Representing geoscientific knowledge in cyberinfrastructure: Some challenges, approaches, and implementations. Geological Society of America Special Papers 397. pp: 1-20 DOI:

Bushong, J.T., Mullock, J.L., Miller, E.C., Raun, W.R. and Brian Arnall, D. (2016a). Evaluation of mid-season sensor based nitrogen fertilizer recommendations for winter wheat using different estimates of yield potential. Precision Agriculture 17(4). pp: 470-487 DOI: .

Bushong, J.T., Mullock, J.L., Miller, E.C., Raun, W.R., Klatt, A.R. and Arnall, D.B. (2016b). Development of an in-season estimate of yield potential utilizing optical crop sensors and soil moisture data for winter wheat. Precision Agriculture 17(4). pp: 451-469 DOI: .

Capalbo, S.M., Antle, J.M. and Seavert, C. (2017 in press). Next generation data systems and knowledge products to support agricultural producers and science-based policy decision making. Agricultural Systems.  DOI: .

Carrara, E., Nation, E. and Sharples, J. (2015). Groundwater information at the Bureau: providing a national picture. HWRS2015, 36th Hydrology and Water Resources Symposium, Hobart, Tasmania, 7-10 Dec 2015. Engineers Australia

Castilla, E., Cunha, D., Lee, F., Loiselle, S., Ho, K. and Hall, C. (2015). Quantification of phytoplankton bloom dynamics by citizen scientists in urban and peri-urban environments. Environmental Monitoring and Assessment C7 - 690 187(11). pp: 1-11 DOI: .

CBH (2017). "LoadNet." CBH Group (Co-operative Bulk Handling), Perth. Retrieved 02/02/2017, from: .

CES (2008). State of the Environment 2008. Victoria. Commissioner for Environmental Sustainability, Victoria, Melbourne. from:

CES (2013). Science, Policy, People. Victoria: State of the Environment 2013. Commissioner for Environmental Sustainability, Victoria, Melbourne. 622p. from:

CES (2015). Framework for the Victorian 2018 State of Environment Report: State and Benefit. Commissioner for Environmental Sustainability, Victoria, Melbourne. 15p. from:

Cohn, J.P. (2008). Citizen Science: Can Volunteers Do Real Research? BioScience 58(3). pp: 192-197 DOI:

Connors, J.P., Lei, S. and Kelly, M. (2012). Citizen Science in the Age of Neogeography: Utilizing Volunteered Geographic Information for Environmental Monitoring. Annals of the Association of American Geographers 102(6). pp: 1267-1289 DOI:

Conrad, C. and Daoust, T. (2008). Community-Based Monitoring Frameworks: Increasing the Effectiveness of Environmental Stewardship. Environmental Management 41(3). pp:358-366 DOI: .

Conrad, C. and Hilchey, K. (2011). A review of citizen science and community-based environmental monitoring: issues and opportunities. Environmental Monitoring and Assessment 176(1-4). pp: 273-291 DOI: .

Couvet, D., Jiguet, F., Julliard, R., Levrel, H. and Teyssedre, A. (2008). Enhancing citizen contributions to biodiversity science and public policy. Interdisciplinary Science Reviews 33(1). pp: 95-103 DOI:

Daberkow, S.G. and McBride, W.D. (2003). Farm and Operator Characteristics Affecting the Awareness and Adoption of Precision Agriculture Technologies in the US. Precision Agriculture 4(2). pp: 163-177 DOI: .

Dahlhaus, P.G. (2015). Corangamite soil health research project: literature review and gap analysis.  Research report for the Corangamite Catchment Management Authority. Centre for eResearch and Digital Innovation, Federation University Australia, Ballarat, Australia. 57p.

Dahlhaus, P.G., MacLeod, A. and Thompson, H. (2012). Federating hydrogeological data to visualise Victoria's groundwater. 34th International Geological Congress, Brisbane, Australia, 5-10 August 2012. Vol. Abstracts (Abstract #1382). 592pp.

Dahlhaus, P.G., Miner, A.S., MacLeod, A. and Thompson, H. (2011). A web-GIS and landslide database for south west Victoria and its application to landslide zonation. Australian Geomechanics 46(2). pp: 203-209.

Dahlhaus, P.G., Milne, R., Nicholson, C., Midwood, J., Breust, P. and Limmer, S. (2016a). Soil sensor data for profitable agriculture. Soil, a Balancing Act Downunder. Joint conference of the New Zealand Society of Soil Science and Soil Science Australia, Queenstown, New Zealand, 12-16 December 2016. Vol.  Poster Abstracts. 152pp

Dahlhaus, P.G., Murphy, A., MacLeod, A., Thompson, H., McKenna, K. and Ollerenshaw, A. (2016b). Making the invisible visible: the impact of federating groundwater data in Victoria, Australia. Journal of Hydroimformatics 2. pp: 238–255 DOI: .

Dahlhaus, P.G., Nicholson, C., Ryan, B., MacLeod, A. and Milne, R. (2016c). Liberating soil data for profitable agriculture and catchment health in the Corangamite region, Australia. Soil, a Balancing Act Downunder. Joint conference of the New Zealand Society of Soil Science and Soil Science Australia, Queenstown, New Zealand. Vol.  Oral Abstracts. 54pp

Danielsen, F., Jensen, P.M., Burgess, N.D., Altamirano, R., Alviola, P.A., Andrianandrasana, H., Brashares, J.S., Burton, A.C., Coronado, I., Corpuz, N., Enghoff, M., Fjeldsa, J., Funder, M., Holt, S., Hubertz, H., Jensen, A.E., Lewis, R., Massao, J., Mendoza, M.M., Ngaga, Y., Pipper, C.B., Poulsen, M.K., Rueda, R.M., Sam, M.K., Skielboe, T., Sorensen, M. and Young, R. (2014). A Multicountry Assessment of Tropical Resource Monitoring by Local Communities. BioScience (online first). DOI: .

de Sousa, J.B. and Andrade Goncalves, G. (2011). Unmanned vehicles for environmental data collection. Clean Technologies and Environmental Policy 13(2). pp: 369-380 DOI: .

Delaney, D., Sperling, C., Adams, C. and Leung, B. (2008). Marine invasive species: validation of citizen science and implications for national monitoring networks. Biological Invasions 10(1). pp: 117-128 DOI: .

Di Cerbo, A. and Biancardi, C. (2013). Monitoring small and arboreal mammals by camera traps: effectiveness and applications. Acta Theriologica 58(3). pp: 279-283 DOI: .

DoE (2016). "The National Plan for Environmental Information Initiative." Australian Government Department of the Environment, Canberra. Retrieved 27/2/2106, from: .

Eastwood, C.R., Chapman, D.F. and Paine, M.S. (2012). Networks of practice for co-construction of agricultural decision support systems: Case studies of precision dairy farms in Australia. Agricultural Systems 108. pp: 10-18 DOI: .

FarmWorks (2017). "FarmWorks Software: Information Management Solutions." Farm Works Information Management, A Division of Trimble, Hamilton, IN, USA. Retrieved 02/02/2017, from: .

Fienen, M.N. and Lowry, C.S. (2012). Social.Water - A crowdsourcing tool for environmental data acquisition. Computers & Geosciences 49. pp: 164-169 DOI: .

Foody, G.M. (2013). Rating crowdsourced annotations: evaluating contributions of variable quality and completeness. International Journal of Digital Earth 7(8). pp: 650-670 DOI: .

Gebbers, R. and Adamchuk, V.I. (2010). Precision Agriculture and Food Security. Science 327(5967). pp: 828-831 DOI: .

Ghadirian, P. and Bishop, I.D. (2008). Integration of augmented reality and GIS: A new approach to realistic landscape visualisation. Landscape and Urban Planning 86(3-4). pp: 226-232 DOI: .

Goodridge, W., Bernard, M., Jordan, R. and Rampersad, R. (2017). Intelligent diagnosis of diseases in plants using a hybrid Multi-Criteria decision making technique. Computers and Electronics in Agriculture 133. pp: 80-87 DOI: .

Graham, E.A., Henderson, S. and Schloss, A. (2011). Using mobile phones to engage citizen scientists in research. Eos, Transactions American Geophysical Union 92(38). pp:313-315 DOI: .

Grain & Graze (2017). "Grain&Graze. Profit through knowledge. Ag Commodity Prices." Grain and Graze 3 program, Australia. Retrieved 02/02/2017, from: .

GrainCorp (2017). "GrainCorp CropConnect: Ready, set, connect." GrainCorp Sydney. Retrieved 02/02/2017, from: .

Guhathakurta, S., Kobayashi, Y., Patel, M., Holston, J., Lant, T., Crittenden, J., Li, K., Konjevod, G. and Date, K. (2009). Digital Phoenix Project: A Multidimensional CRICOS Provider No. 00103D Page 19 of 21 Journey through Time. Chapter in: Visualizing Sustainable Planning. G. Steinebach, S. Guhathakurta and H. Hagen, (eds.). Springer Berlin Heidelberg. 159-184 pp.

Gurney, R., Emmett, B., McDonald, A., Blair, G., Buytaert, W., Freer, J.E., Haygarth, P., Rees, G., Tetzlaff, D. and EVO Science Team (2011). The Environmental Virtual Observatory: A New Vision for Catchment Science. American Geophysical Union, Fall Meeting 2011. abstract #B11D-0515pp. from:

Haklay, M. (2013). Citizen Science and Volunteered Geographic Information: Overview and Typology of Participation. Chapter 7 in: Crowdsourcing Geographic Knowledge. D. Sui, S. Elwood, M. Goodchild and M. Haklay, (eds.). Springer Netherlands. 105-122pp.

Han, W., Yang, Z., Di, L. and Mueller, R. (2012). CropScape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Computers and Electronics in Agriculture 84(0). pp: 111-123 DOI: .

Haklay, M. (2013). Citizen Science and Volunteered Geographic Information: Overview and Typology of Participation. Chapter 7 in: Crowdsourcing Geographic Knowledge. D. Sui, S. Elwood, M. Goodchild and M. Haklay, (eds.). Springer Netherlands. 105-122 pp.

igrain (2017). "", Bathurst, NSW. Retrieved 02/02/2017, from: .

INSPIRE (2013a). D2.8.II.4 INSPIRE Data Specification on Geology. Technical Guidelines. D2.8.II.4_v3.0. from: .

INSPIRE (2013b). D2.8.III.7 INSPIRE Data Specification on Environmental monitoring Facilities. Technical Guidelines. D2.8.III.7_v3.0rc3. from: .

Janssen, S.J.C., Porter, C.H., Moore, A.D., Athanasiadis, I.N., Foster, I., Jones, J.W. and Antle, J.M. (2017 in press). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems.  DOI: .

Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J., Herrero, M., Howitt, R.E., Janssen, S., Keating, B.A., Munoz-Carpena, R., Porter, C.H., Rosenzweig, C. and Wheeler, T.R. (2017 in press-a). Brief history of agricultural systems modeling. Agricultural Systems.  DOI: .

Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J., Herrero, M., Howitt, R.E., Janssen, S., Keating, B.A., Munoz-Carpena, R., Porter, C.H., Rosenzweig, C. and Wheeler, T.R. (2017 in press-b). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems.  DOI: .

Kanter, D.R., Musumba, M., Wood, S.L.R., Palm, C., Antle, J., Balvanera, P., Dale, V.H., Havlik, P., Kline, K.L., Scholes, R.J., Thornton, P., Tittonell, P. and Andelman, S. (2017 in press). Evaluating agricultural trade-offs in the age of sustainable development. Agricultural Systems.  DOI: .

Keogh, M. and Henry, M. (2016). The Implications of Digital Agriculture and Big Data for Australian Agriculture. Australian Farm Institute. 84p. from: .

Kim, S., Robson, C., Zimmerman, T., Pierce, J. and Haber, E.M. (2011). Creek watch: pairing usefulness and usability for successful citizen science. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 7-12, 2011, Vancouver, BC, Canada. ACM. 2125-2134pp

Klug, H. and Kmoch, A. (2014). A SMART groundwater portal: An OGC web services orchestration framework for hydrology to improve data access and visualisation in New Zealand. Computers & Geosciences 69. pp: 78-86 DOI: .

Kmoch, A., Klug, H., Ritchie, A.B.H., Schmidt, J. and White, P.A. (2015). A Spatial Data Infrastructure Approach for the Characterization of New Zealand's Groundwater Systems. Transactions in GIS. pp: n/a-n/a DOI: .

Krishnan, P., Sharma, R.K., Dass, A., Kukreja, A., Srivastav, R., Singhal, R.J., Bandyopadhyay, K.K., Lal, K., Manjaiah, K.M., Chhokar, R.S. and Gill, S.C. (2016). Web-based crop model: Web InfoCrop - Wheat to simulate the growth and yield of wheat. Computers and Electronics in Agriculture 127. pp: 324-335 DOI: .

Kruize, J.W., Wolfert, J., Scholten, H., Verdouw, C.N., Kassahun, A. and Beulens, A.J.M. (2016). A reference architecture for Farm Software Ecosystems. Computers and Electronics in Agriculture 125. pp: 12-28 DOI: .

Kubicek, P., Kozel, J., Stampach, R. and Lukas, V. (2013). Prototyping the visualization of geographic and sensor data for agriculture. Computers and Electronics in Agriculture 97(0). pp: 83-91 DOI: .

Kutter, T., Tiemann, S., Siebert, R. and Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture 12(1). pp: 2-17 DOI: .

Lawrence, A. (2006). "No Personal Motive?" Volunteers, Biodiversity, and the False Dichotomies of Participation. Ethics, Place & Environment 9(3). pp: 279-298 DOI: .

Little, K.E., Hayashi, M. and Liang, S. (2015). Community-Based Groundwater Monitoring Network Using a Citizen-Science Approach. Groundwater (accepted for publication and available online). DOI: .

Loch, A., Adamson, D., & Mallawaarachchi, T. (2014). Role of hydrology and economics in water management policy under increasing uncertainty. Journal of Hydrology, 518 (Part A), 5-16. Doi:

Lowry, C.S. and Fienen, M.N. (2013). CrowdHydrology: Crowdsourcing Hydrologic Data and Engaging Citizen Scientists. Ground Water 51(1). pp: 151-156 DOI: .

Lynch, C. (2008). Big data: How do your data grow? Nature, 455, 28-29 (4 September 2008). doi:

Lynn, I., Manderson, A., Page, M., Harmsworth, G., Eyles, G.O., Douglas, G., Mackay, A. and Newsome, P. (2009). Land Use Capability Survey Hand-book — a New Zealand Handbook for the Classification of Land. Agresearch, Lincoln; Landcare Research, Lower Hutt; GNS Science, Hamilton, New Zealand. 3 ed.

Machado, B.B., Orue, J.P.M., Arruda, M.S., Santos, C.V., Sarath, D.S., Goncalves, W.N., Silva, G.G., Pistori, H., Roel, A.R. and Rodrigues-Jr, J.F. (2016). BioLeaf: A professional mobile application to measure foliar damage caused by insect herbivory. Computers and Electronics in Agriculture 129. pp: 44-55 DOI: .

MacLeod, A., Dahlhaus, P.G., Thompson, H., James, A. and Cox, M. (2013). Web-based visualisation of 3d groundwater models. Solving the Groundwater Challenges of the 21st Century, 40th IAH Congress, 15-20 September 2013, Perth, Australia. Vol. Conference Abstracts. International Association of Hydrogeologists

MacRae, I., Koch, R., Alves, T., Marsten, Z., Baker, T., Gebre-Egziabher, D., Taylor, B., Olson, C., Regan, C. and Hurley, T. (2016). The view from above Unmanned aerial systems and remote scouting for insects. Crops and Soils 49(3). pp: 16-19 DOI:

Mayer-Schonberger, V. and Cukier, K. (2013). Big Data: A revolution that will transform how we live, work and think. Houghton Mifflin Harcourt, New York. 245p.

McAllister, A., Cherry, D., Robson, S. and Groffen, J. (2013). FarmML: A way to describe the farm. Digital Rural Futures: Smart Farms - Smart Regions Conference, , University of New England, Armidale, N.S.W., 26-28 June 2013. Vol.  Proceedings (ed. D.W. Lanb), p.61

McBratney, A., Whelan, B., Ancev, T. and Bouma, J. (2005). Future Directions of Precision Agriculture. Precision Agriculture 6(1). pp: 7-23 DOI: .

McCown, R.L., Carberry, P.S., Dalgliesh, N.P., Foale, M.A. and Hochman, Z. (2012). Farmers use intuition to reinvent analytic decision support for managing seasonal climatic variability. Agricultural Systems 106(1). pp: 33-45 DOI: .

Miller-Rushing, A., Primack, R. and Bonney, R. (2012). The history of public participation in ecological research. Frontiers in Ecology and the Environment 10(6). pp: 285-290 DOI: .

Milne, R., Dahlhaus, P., Nicholson, C., Thompson, H., Macleod, A., Feely, P., McCue, T., Gillet, H. and Corbett, J. (2014). On-line Farm Trials: a research repository for Australian grain growers Digital Rural Futures.  Regional Futures. Agricultural Futures. Digital Futures. Conference 25-27 June 2014, University of Southern Queensland, Toowoomba, Queensland, Australia. Vol.  Abstracts, pp.20-21

Moloney, M.M. (2015). Digital agriculture: Where high-performance computing and agriculture converge. Australasian Biotechnology 25(2). pp: 44.

Murakami, E., Saraiva, A.M., Ribeiro Junior, L.C.M., Cugnasca, C.E., Hirakawa, A.R. and Correa, P.L.P. (2007). An infrastructure for the development of distributed service-oriented information systems for precision agriculture. Computers and Electronics in Agriculture 58(1). pp: 37-48 DOI: .

Myers, J., McLaren, T. and Wadsworth, A. (2008). Digital Agriculture: Learning to Feed a Hungry World. 2008 IEEE Fourth International Conference on eScience, 7-12 Dec. 2008. 438-439pp.

Nash, E., Korduan, P. and Bill, R. (2009). Applications of open geospatial web services in precision agriculture: a review. Precision Agriculture 10(6). pp: 546 DOI: .

Navarro-Hellin, H., Martinez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F. and Torres-Sanchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture 124. pp: 121-131 DOI: .

Newman, G., Graham, J., Crall, A. and Laituri, M. (2011). The art and science of multi-scale citizen science support. Ecological Informatics 6(3-4). pp: 217-227 DOI: .

Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S. and Crowston, K. (2012). The future of citizen science: emerging technologies and shifting paradigms. Frontiers in Ecology and the Environment 10(6). pp: 298-304 DOI: .

Newman, G., Zimmerman, D., Crall, A., Laituri, M., Graham, J. and Stapel, L. (2010). Userfriendly web mapping: lessons from a citizen science website. International Journal of Geographical Information Science 24(12). pp: 1851-1869 DOI: .

Nikkila, R., Seilonen, I. and Koskinen, K. (2010). Software architecture for farm management information systems in precision agriculture. Computers and Electronics in Agriculture 70(2). pp: 328-336 DOI: .

Norris, S.J., Walsh, M.J.K. and Kaffenberger, T.A. (2014). Visualising Famagusta: interdisciplinary approaches to the study of the Orthodox Cathedral of Saint George of the Greeks in Famagusta, Cyprus. Archives and Manuscripts 42(1). pp: 48-60 DOI: .

OGC (2015). "OGC History (abbreviated)." Open Geospatial Consortium. Retrieved 18/6/2015, from: .

OGC (2017). "Agriculture DWG." Open Geospatial Consortium. Retrieved 30/01/2017, from: .

Overdevest, C., Huyck Orr, C. and Stepenuck, K. (2004). Volunteer Stream Monitoring and Local Participation in Natural Resource Issues. Human Ecology Review 11(2). pp: 177-185.

Pandya, R.E. (2012). A framework for engaging diverse communities in citizen science in the US. Frontiers in Ecology and the Environment 10(6). pp: 314-317 DOI: .

Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R.L. and Mouazen, A.M. (2016). Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture 121. pp: 57-65 DOI: .

Paustian, M. and Theuvsen, L. (2016). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture. pp: 1-16 DOI: .

Petty, Z., Landrieu, J., Coulais, J.F., Pere, C. and de Ganay, O. (2014). Space and time scaling issues in data management: the virtual restitution of Cluniac heritage. Applied Geomatics 6(2). pp: 71-79 DOI: .

Phillips, A.J., Newlands, N.K., Liang, S.H.L. and Ellert, B.H. (2014). Integrated sensing of soil moisture at the field-scale: Measuring, modeling and sharing for improved agricultural decision support. Computers and Electronics in Agriculture 107(0). pp: 73-88 DOI: .

Pollock, R.M. and Whitelaw, G.S. (2005). Community-Based Monitoring in Support of Local Sustainability. Local Environment 10(3). pp: 211-228 DOI: .

Polo, J., Hornero, G., Duijneveld, C., Garcia, A. and Casas, O. (2015). Design of a low-cost Wireless Sensor Network with UAV mobile node for agricultural applications. Computers and Electronics in Agriculture 119. pp: 19-32 DOI: .

Porter, J.H., Hanson, P.C., & Lin, C. (2012). Staying afloat in the sensor data deluge. Trends in Ecology and Evolution, 27(2), 121-129.

PrecisionAg (2017). "Precision Agriculture. About Us. .", Ballarat. Retrieved 30/01/2017, from: .

Productivity Commission (2016). Data Availability and Use. . Productivity Commission Draft Report. Australian Government, Canberra. 652p. from: .

Rafoss, T., Saelid, K., Sletten, A., Gyland, L.F. and Engravslia, L. (2010). Open geospatial technology standards and their potential in plant pest risk management - GPS-enabled mobile phones utilising open geospatial technology standards Web Feature Service Transactions support the fighting of fire blight in Norway. Computers and Electronics in Agriculture 74(2). pp: 336-340 DOI: .

RDA (2017). "Agricultural Data IG." Research Data Alliance, Interest Group in Agricultural Data. Retrieved 30/01/2017, from: .

Reiser, D., Paraforos, D.S., Khan, M.T., Griepentrog, H.W. and Vazquez-Arellano, M. (2016). Autonomous field navigation, data acquisition and node location in wireless sensor networks. Precision Agriculture. pp: 1-14 DOI: .

Riedel, M. and Terstyanszky, G. (2009). Grid Interoperability for e-Research. Journal of Grid Computing 7(3). pp: 285-286 DOI: .

Ritchie, A., Medyckyj-Scott, D., Wilson, P., Simons, B., Dahlhaus, P.G., MacLeod, A., Roudier, P., Gregory, L. and Watson, B. (2016). Developing a global soil data infrastructure - The Open Geospatial Consortium Soil Data Interoperability Experiment Soil, a Balancing Act Downunder. Joint conference of the New Zealand Society of Soil Science and Soil Science Australia, Queenstown, New Zealand, 12-16 December 2016. Vol.  Oral Abstracts. 112pp

Robertson, M.J., Llewellyn, R.S., Mandel, R., Lawes, R., Bramley, R.G.V., Swift, L., Metz, N. and O'Callaghan, C. (2012). Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects. Precision Agriculture 13(2). pp: 181-199 DOI: .

Robson, C., Hearst, M., Kau, C. and Pierce, J. (2013). Comparing the use of social networking and traditional media channels for promoting citizen science. Proceedings of the 2013 conference on Computer supported cooperative work, February 23-27, San Antonio, Texas, USA. ACM. 1463-1468pp.

Rose, D.C., Sutherland, W.J., Parker, C., Lobley, M., Winter, M., Morris, C., Twining, S., Ffoulkes, C., Amano, T. and Dicks, L.V. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems 149. pp: 165-174 DOI: .

Rossiter, D.G., Liu, J., Carlisle, S. and Zhu, A.X. (2015). Can citizen science assist digital soil mapping? Geoderma 259-260. pp: 71-80 DOI: .

Rotman, D., Preece, J., Hammock, J., Procita, K., Hansen, D., Parr, C., Lewis, D. and Jacobs, D. (2012). Dynamic changes in motivation in collaborative citizen-science projects. Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, February 11-15, Seattle, Washington, USA. ACM. 217-226pp.

Rowe, R.K., Howe, D.F. and Alley, N.F. (1981). Guidelines for Land Capability Assessment in Victoria. Soil Conservation Authority Kew, Victoria. 73p.

Salter, J.D., Campbell, C., Journeay, M. and Sheppard, S.R.J. (2009). The digital workshop: Exploring the use of interactive and immersive visualisation tools in participatory planning. Journal of Environmental Management 90(6). pp: 2090-2101 DOI: .

Sanchez, P.A., Ahamed, S., Carre, F., Hartemink, A.E., Hempel, J., Huising, J., Lagacherie, P., McBratney, A.B., McKenzie, N.J., Mendonca-Santos, M.d.L., Minasny, B., Montanarella, L., Okoth, P., Palm, C.A., Sachs, J.D., Shepherd, K.D., Vagen, T.-G., Vanlauwe, B., Walsh, M.G., Winowiecki, L.A. and Zhang, G.-L. (2009). Digital Soil Map of the World. Science 325(5941). pp: 680-681 DOI: .

Sansone, S.-A., Rocca-Serra, P., Field, D., Maguire, E., Taylor, C., Hofmann, O., Fang, H., Neumann, S., Tong, W., Amaral-Zettler, L., Begley, K., Booth, T., Bougueleret, L., Burns, G., Chapman, B., Clark, T., Coleman, L.-A., Copeland, J., Das, S., de Daruvar, A., de Matos, P., Dix, I., Edmunds, S., Evelo, C.T., Forster, M.J., Gaudet, P., Gilbert, J., Goble, C., Griffin, J.L., Jacob, D., Kleinjans, J., Harland, L., Haug, K., Hermjakob, H., Sui, S.J.H., Laederach, A., Liang, S., Marshall, S., McGrath, A., Merrill, E., Reilly, D., Roux, M., Shamu, C.E., Shang, C.A., Steinbeck, C., Trefethen, A., Williams-Jones, B., Wolstencroft, K., Xenarios, I. and Hide, W. (2012). Toward interoperable bioscience data. Nature Genetics 44(2). pp: 121-126.

Schmidt, E. and Cohen, J. (2013). The New Digital Age: Reshaping the future of people, nations and business. John Murray (Publishers), London. 336p.

Sheppard, S.A. and Terveen, L. (2011). Quality is a verb: the operationalization of data quality in a citizen science community. Proceedings of the 7th International Symposium on Wikis and Open Collaboration, October 3-5, 2011, Mountain View, California. ACM

Silvertown, J. (2009). A new dawn for citizen science. Trends in Ecology & Evolution 24(9). pp: 467-471 DOI: .

Soderstrom, M., Sohlenius, G., Rodhe, L. and Piikki, K. (2016). Adaptation of regional digital soil mapping for precision agriculture. Precision Agriculture 17(5). pp: 588-607 DOI: .

Spekken, M., de Bruin, S., Molin, J.P. and Sparovek, G. (2016). Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion. Computers and Electronics in Agriculture 124. pp: 194-210 DOI: .

SST (2017a). "The agX Platform. The language of agriculture." SST Software, Stillwater, OK, U.S.A. Retrieved 16/2/2017, from: .

SST (2017b). "SST Software. Manage Data. Harvest Information.". SST Software, Stillwater, OK, USA. Retrieved 02/02/2017, from: .

Steeneveld, W., Hogeveen, H. and Oude Lansink, A.G.J.M. (2015). Economic consequences of investing in sensor systems on dairy farms. Computers and Electronics in Agriculture 119. pp: 33-39 DOI: .

Stockmann, U., Malone, B.P., McBratney, A.B. and Minasny, B. (2015). Landscape-scale exploratory radiometric mapping using proximal soil sensing. Geoderma 239 - 240. pp: 115-129 DOI: .

Stubbs, M. (2016). Big Data in U.S. Agriculture. Report prepared for Members and Committees of Congress. Congressional Research Service. 17p. from: .

Sui, D., Goodchild, M. and Elwood, S. (2013). Volunteered Geographic Information, the Exaflood, and the Growing Digital Divide. Chapter One in: Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice. D. Sui, M. Goodchild and S. Elwood, (eds.). Springer, Dordrecht. 1-12 pp.

Tayyebi, A., Meehan, T.D., Dischler, J., Radloff, G., Ferris, M. and Gratton, C. (2016). SmartScape (TM): A web-based decision support system for assessing the tradeoffs among multiple ecosystem services under crop-change scenarios. Computers and Electronics in Agriculture 121. pp: 108-121 DOI: .

Tey, Y.S. and Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: a review for policy implications. Precision Agriculture 13(6). pp: 713-730 DOI: .

Thompson, H., Dahlhaus, P.G. and MacLeod, A. (2014). The hype and the hope: Progressing towards big data insights for regional communities. Digital Rural Futures Conference, CRICOS Provider No. 00103D Page 21 of 21 25th - 27th June 2014, University of Southern Queensland, Toowoomba, Queensland. Vol. Abstracts, p.53.

Thorp, K.R. and Tian, L.F. (2004). A Review on Remote Sensing of Weeds in Agriculture. Precision Agriculture 5(5). pp: 477-508 DOI: .

Torres-Sanchez, J., Pena, J.M., de Castro, A.I. and Lopez-Granados, F. (2014). Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture 103(0). pp: 104-113 DOI: .

Tulloch, A.I.T., Possingham, H.P., Joseph, L.N., Szabo, J. and Martin, T.G. (2013). Realising the full potential of citizen science monitoring programs. Biological Conservation 165. pp: 128-138 DOI: .

UNEP (2016). "United Nations Environment Programme." United Nations Environment Programme, Nairobi, Kenya. Retrieved 28/1/2016, from:

van Liedekerke, M. and Panagos, P. (2014). "European Soil Portal - Soil Data and Information Systems." European Commission: Joint Research Centre & Institute for Environment and Sustainability. Retrieved 28/7/2014, from: . Last updated: 2/7/2014.

Weber, S. (2005). The Success of Open Source. Harvard University Press, Cambridge, MA, USA. 320p.

Welle Donker, F. and van Loenen, B. (2017). How to assess the success of the open data ecosystem? International Journal of Digital Earth 10(3). pp: 284-306 DOI: .

Werts, J., Mikhailova, E., Post, C. and Sharp, J. (2012). An Integrated WebGIS Framework for Volunteered Geographic Information and Social Media in Soil and Water Conservation. Environmental Management 49(4). pp: 816-832 DOI: .

Whannell, R. and Tobias, S. (2015). Educating Australian high school students in relation to the digital future of agriculture. Journal of Economic & Social Policy 17(2). pp: 61-80.

Wheeler, D.M., Ledgard, S.F. and DeKlein, C.A.M. (2008). Using the OVERSEER nutrient budget model to estimate on-farm greenhouse gas emissions. Australian Journal of Experimental Agriculture 48(2). pp: 99-103 DOI: .

Wheeler, D.M., Ledgard, S.F., DeKlein, C.A.M., Monaghan, R.M., Carey, P.L., McDowell, R.W. and Johns, K.L. (2003). OVERSEER (R) nutrient budgets - moving towards on-farm resource accounting. Proceedings of the New Zealand Grassland Association 65.

Whelan, B. and Taylor, J. (2013). Precision Agriculture for grain and production systems. CSIRO publishing, Collingwood. 200p.

Wiggins, A. and Crowston, K. (2012). Goals and Tasks: Two Typologies of Citizen Science Projects. System Science (HICSS), 45th Hawaii International Conference, Maui, Hawaii, 4-7 Jan. 2012. IEEE. 3426-3435pp.

Wilkinson, M., Beven, K., Brewer, P., El-khatib, Y., Gemmell, A., Haygarth, P., Mackay, E., Macklin, M., Marshall, K., Quinn, P., Stutter, M., Thomas, N. and Vitolo, C. (2013). The Environmental Virtual Observatory (EVO) local exemplar: A cloud based local landscape learning visualisation tool for communicating flood risk to catchment stakeholders. EGU General Assembly 2013, 7-12 April, 2013, Vienna, Austria. EGU2013-11592pp. from:

Wissen, U., Schroth, O., Lange, E. and Schmid, W.A. (2008). Approaches to integrating indicators into 3D landscape visualisations and their benefits for participative planning situations. Journal of Environmental Management 89(3). pp: 184-196 DOI: .

Yalew, S.G., van Griensven, A. and van der Zaag, P. (2016). AgriSuit: A web-based GIS-MCDA framework for agricultural land suitability assessment. Computers and Electronics in Agriculture 128. pp: 1-8 DOI: .

Yost, M.A., Kitchen, N.R., Sudduth, K.A., Sadler, E.J., Drummond, S.T. and Volkmann, M.R. (2016). Long-term impact of a precision agriculture system on grain crop production. Precision Agriculture. pp: 1-20 DOI: .

Zhang, C. and Kovacs, J. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture 13(6). pp: 693-712 DOI: .

Zlot, R., Bosse, M., Greenop, K., Jarzab, Z., Juckes, E. and Roberts, J. (2014). Efficiently capturing large, complex cultural heritage sites with a handheld mobile 3D laser mapping system. Journal of Cultural Heritage 15(6). pp: 670-678 DOI: .

Zuiderwijk, A., & Janssen, M. (2014). Open data policies, their implementation and impact: A framework for comparison. Government Information Quarterly, 31(1), 17-29. Doi:

Back to Top